Effective Spring 2019, 201930

Required Syllabus Information - all must be included in the course syllabus

MAT 202 Course Title: Calculus II: MA1 Course Credits: 5

Course Description: Continues the study of single variable calculus which will include techniques of integration, analytic geometry, improper integrals, convergence of infinite numerical series and power series.

GT Pathways Requirements:

Guaranteed Transfer (GT) Pathways Course Statement:

The Colorado Commission on Higher Education has approved MAT 202 for inclusion in the Guaranteed Transfer (GT) Pathways program in the GT- MA1 category. For transferring students, successful completion with a minimum C– grade guarantees transfer and application of credit in this GT Pathways category. For more information on the GT Pathways program, go to http://highered.colorado.gov/academics/transfers/gtpathways/curriculum.html.

MATHEMATICS CONTENT CRITERIA GT-MA1

- a) Demonstrate good problem-solving habits, including:
 - Estimating solutions and recognizing unreasonable results.
 - Considering a variety of approaches to a given problem, and selecting one that is appropriate.
 - Interpreting solutions correctly.
- b) Generate and interpret symbolic, graphical, numerical, and verbal (written or oral) representations of mathematical ideas.
- c) Communicate mathematical ideas in written and/or oral form using appropriate mathematical language, notation, and style.
- d) Apply mathematical concepts, procedures, and techniques appropriate to the course.
- e) Recognize and apply patterns or mathematical structure.
- f) Utilize and integrate appropriate technology.

COMPETENCIES & STUDENT LEARNING OUTCOMES FOR GT-MA1

Quantitative Literacy:

- 1. Interpret Information
 - a. Explain information presented in mathematical forms (e.g., equations, graphs, diagrams, tables, words).

2. <u>Represent Information</u>

a. Convert information into and between various mathematical forms (e.g., equations, graphs, diagrams, tables, words).

3. Perform Calculations

- a. Solve problems or equations at the appropriate course level.
- b. Use appropriate mathematical notation.

c. Solve a variety of different problem types that involve a multi-step solution and address the validity of the results.

4. Apply and Analyze Information

- a. Make use of graphical objects (such as graphs of equations in two or three variables, histograms, scatterplots of bivariate data, geometrical figures, etc.) to supplement a solution to a typical problem at the appropriate level.
- b. Formulate, organize, and articulate solutions to theoretical and application problems at the appropriate course level.
- c. Make judgments based on mathematical analysis appropriate to the course level.

5. <u>Communicate Using Mathematical Forms</u>

a. Express mathematical analysis symbolically, graphically, and in written language that clarifies/justifies/summarizes reasoning (may also include oral communication).

SYSTEM REQUIREMENTS:

REQUIRED COURSE LEARNING OUTCOMES

- 1. Solve application problems related to integration.
- 2. Solve introductory differential equations and associated initial value problems.
- 3. Apply appropriate integration techniques including integration by parts, trig substitution and partial fractions to evaluate definite, indefinite, and improper integrals.
- 4. Demonstrate the convergence or divergence of infinite sequences and series.
- 5. Express functions as power series (including Taylor series) with the appropriate interval of convergence.
- 6. Estimate errors in series approximations.
- 7. Graph curves in polar and parametric form.
- 8. Analyze curves in polar and parametric form using calculus techniques.

REQUIRED TOPICAL OUTLINE

The required topical outline information MUST be included in the syllabi. It may be incorporated using one of the following variations: copying the topical outline as written below, integrating the topics within the assignment schedule, or listing the topics to be covered.

- I. Application problems related to integration
 - a. Volumes of revolution using disk and shell methods
 - b. Arc length
 - c. Surface area of revolution
 - d. Work
 - e. Centroids
- II. Introductory differential equations and associated initial value problems
 - a. Separation of variables
 - b. Initial value problems
- III. Integration techniques including integration by parts, trig substitution and partial fraction to evaluate definite, indefinite, and improper integrals
 - a. Integration by parts
 - b. Integrating powers of the trigonometric functions

- c. Trigonometric substitutions
- d. Integration of inverse trigonometric functions
- e. Integration of exponential and logarithmic functions
- f. Integration using partial fractions decomposition
- g. Evaluating improper integrals
- Convergence or divergence of infinite sequences and series
 - a. Definition of sequence convergence
 - b. L'Hopital's Rule

IV.

- c. Definition of an infinite series convergence
- d. Convergence of geometric series
- e. Sum of a convergent geometric series
- f. Application of the nth term test for divergence
- g. Application of the integral test
- h. Identification and classification of p-series as convergent or divergent
- i. Use of direct and limit comparison tests to determine convergence
- j. Use of ratio and root tests
- k. Use of alternating series test to determine convergence
- I. Classification of series as absolutely or conditionally convergent
- V. Functions as power series (including Taylor series) with the appropriate interval of convergence
 - a. Taylor polynomials and approximations
 - b. Taylor series
 - c. Maclaurin series
 - d. Binomial series
 - e. Geometric power series
 - f. Manipulation of power series to express functions
 - g. Interval and radius of convergence of power series
 - h. Differentiation and integration of power series
- VI. Errors in series approximations
 - a. Alternating series remainder theorem
 - b. Taylor's Remainder Theorem
- VII. Curves in polar and parametric forms
 - a. Plane curves and parametric equations
 - b. Transformation of parametric to rectangular forms and vice versa
 - c. Graphing polar coordinates and curves
 - d. Transformation of polar expressions to rectangular forms and vice versa
- VIII. Curves in polar and parametric forms using calculus techniques
 - a. Slopes and tangent lines for equations in polar coordinates
 - b. Areas and arc length in polar coordinates
 - c. Slope of a tangent line to a parametric curve
 - d. Arc length of a parametric curve

RECOMMENDED TOPICAL OUTLINE

- I. Application problems related to Integration
 - a. Fluid pressure and force
- II. Integrate and differentiate additional functions.
 - a. Hyperbolic functions
- III. Additional integration methods.

- a. Integration tables
- b. Numerical methods of integration
- IV. Integrate and differentiate additional functions.
 - a. Hyperbolic functions
- V. Additional sequence and series tests and definitions.
 - a. Monotonic sequences
 - b. Using the integral test to control the error in an approximation
- VI. Conic, polar and parametric forms.
 - a. Graph conic sections
 - b. Translation and axes rotation
 - c. Surface area of revolution in polar and parametric form

Syllabi requirements, including legal compliance information must be included. Individual College syllabi guidelines may include additional information. Please contact your VPI/CAO for specific College requirements.