Required Syllabus Information - all must be included in the course syllabus

MAT 203

Course Title: Calculus III: MA1

Course Credits: 4

Course Description: Focuses the traditional subject matter of multivariable Calculus. Topics include vectors, vector-valued functions, partial derivatives, analytic geometry, multiple integrals, line integrals and applications.

GT Pathways Requirements:

Guaranteed Transfer (GT) Pathways Course Statement:

The Colorado Commission on Higher Education has approved MAT 203 for inclusion in the Guaranteed Transfer (GT) Pathways program in the GT- MA1 category. For transferring students, successful completion with a minimum C– grade guarantees transfer and application of credit in this GT Pathways category. For more information on the GT Pathways program, go to http://highered.colorado.gov/academics/transfers/gtpathways/curriculum.html.

MATHEMATICS CONTENT CRITERIA GT-MA1

- a) Demonstrate good problem-solving habits, including:
 - Estimating solutions and recognizing unreasonable results.
 - Considering a variety of approaches to a given problem, and selecting one that is appropriate.
 - Interpreting solutions correctly.
- b) Generate and interpret symbolic, graphical, numerical, and verbal (written or oral) representations of mathematical ideas.
- c) Communicate mathematical ideas in written and/or oral form using appropriate mathematical language, notation, and style.
- d) Apply mathematical concepts, procedures, and techniques appropriate to the course.
- e) Recognize and apply patterns or mathematical structure.
- f) Utilize and integrate appropriate technology.

COMPETENCIES & STUDENT LEARNING OUTCOMES FOR GT-MA1

Quantitative Literacy:

- 1. Interpret Information
 - a. Explain information presented in mathematical forms (e.g., equations, graphs, diagrams, tables, words).

2. <u>Represent Information</u>

a. Convert information into and between various mathematical forms (e.g., equations, graphs, diagrams, tables, words).

3. <u>Perform Calculations</u>

- a. Solve problems or equations at the appropriate course level.
- b. Use appropriate mathematical notation.

c. Solve a variety of different problem types that involve a multi-step solution and address the validity of the results.

4. Apply and Analyze Information

- a. Make use of graphical objects (such as graphs of equations in two or three variables, histograms, scatterplots of bivariate data, geometrical figures, etc.) to supplement a solution to a typical problem at the appropriate level.
- b. Formulate, organize, and articulate solutions to theoretical and application problems at the appropriate course level.
- c. Make judgments based on mathematical analysis appropriate to the course level.

5. <u>Communicate Using Mathematical Forms</u>

a. Express mathematical analysis symbolically, graphically, and in written language that clarifies/justifies/summarizes reasoning (may also include oral communication).

SYSTEM REQUIREMENTS:

REQUIRED COURSE LEARNING OUTCOMES

- 1. Apply vector algebra to the geometry of space.
- 2. Analyze 2 and 3 dimensional curves given as vector valued functions using calculus techniques.
- 3. Examine surfaces/multivariable functions and their graphs using calculus techniques.
- 4. Construct multiple integrals for regions in the plane and space using rectangular, polar, cylindrical, and spherical coordinates to measure areas, volumes, and other applications.
- 5. Evaluate double and triple integrals.
- 6. Determine vector field properties.
- 7. Apply theorems of vector calculus, such as Fundamental Theorem of Line Integrals and Green's Theorem.

REQUIRED TOPICAL OUTLINE

- I. Apply vector algebra to the geometry of space.
 - a. Vector addition and subtraction, geometrically and algebraically
 - b. Properties of vectors in 2 and 3 dimensional space
 - c. Dot product, cross product, and projection
 - d. Applications of the dot and cross products
 - e. Distances in 3-space
- II. Analyze 2 and 3 dimensional curves given as vector valued functions using calculus techniques.
 - a. Graph curves given in vector valued form
 - b. Construct a vector valued function for a given curve
 - c. Evaluate limits
 - d. Determine continuity and smoothness
 - e. Differentiate and integrate vector valued functions
 - f. Parametric and symmetric forms of a line
 - g. Find the unit tangent and unit normal vectors of a curve
 - h. Examine applications of vector valued functions

- i. Find arc length and curvature
- j. Projectile motion
- III. Examine surfaces/multivariable functions and their graphs using calculus techniques.
 - a. Graph cylinders and quadric surfaces
 - b. Graphs of lines and planes in 3 dimensional space
 - c. Graph cylindrical and spherical coordinates and surfaces
 - d. Construct level curves and level surfaces
 - e. Graph a surface given in parametric form
 - f. Limits and continuity of functions and surfaces
 - g. Find the domain of surfaces/multivariable functions
 - h. Evaluate limits using the definition and theorems
 - i. Find partial derivatives and directional derivatives
 - j. Use the chain rule
 - k. Use implicit differentiation
 - I. Differentials
 - m. Find the gradient
 - n. Find the tangent plane and normal line
 - o. Optimization of surfaces using calculus
 - p. Show differentiability of a multivariable function
- IV. Construct multiple integrals for regions in the plane and space using rectangular, polar,
 - cylindrical, and spherical coordinates to measure areas, volumes, and other applications.
 - a. Transform equations of surfaces between rectangular, cylindrical and spherical forms
 - b. Transform double integrals between rectangular and polar
 - c. Transform triple integrals between rectangular, cylindrical and spherical
 - d. Evaluate double and triple integrals
 - e. Evaluate iterated integrals
 - f. Change the order of integration in a double or triple integral
 - g. Determine vector field properties
 - h. Conservative vector fields
 - i. Find curl
 - j. Find divergence
- V. Apply theorems of vector calculus, such as Fundamental Theorem of line integrals and Green's Theorem.
 - a. Evaluate a line integral
 - b. Evaluate a line integral in a vector field
 - c. Use the Fundamental Theorem of line integrals
 - d. Use independence of path
 - e. Use Green's Theorem
 - f. Evaluate a surface integral
 - g. Evaluate a surface integral in a vector field
 - h. Find work done in a vector field using theorems related to line integrals
 - i. Find flux in a vector field using theorems related to surface integrals

RECOMMENDED TOPICAL OUTLINE

- I. Find equations or vector valued functions for surfaces.
 - a. Construct the equation of a surface of revolution

b. Construct a vector valued function for a given surface, with the necessary domain

CCCOnline Course Policies: http://www.ccconline.org/ccconline-course-policies/

Effective Implementation date: Spring 2018, 201830